Dr. Silvia Liu and Dr. Dean Yimlamai and colleagues published a paper in Hepatology Communications, entitled, “Transcriptomic profiling of a multiethnic pediatric NAFLD cohort reveals genes and pathways associated with disease.”

Click here to read the full article

Yao K, Tarabra E, Sia D, Morotti R, Fawaz R, Valentino P, Santoro N, Caprio S, Liu S, Yimlamai D. Transcriptomic profiling of a multiethnic pediatric NAFLD cohort reveals genes and pathways associated with disease. Hepatol Commun. 2022 Mar 21. doi: 10.1002/hep4.1940. Epub ahead of print. PMID: 35312185.


Nonalcoholic fatty liver disease (NAFLD) is the most common type of chronic liver disease in children. The mechanisms that drive NAFLD disease progression in this specific patient population remain poorly defined. In this study, we obtained liver biopsy samples from a multiethnic cohort of pediatric patients with NAFLD (n = 52, mean age = 13.6 years) and healthy liver controls (n = 5). We analyzed transcriptomic changes associated with NAFLD stages using high-throughput RNA sequencing. Unsupervised clustering as well as pairwise transcriptome comparison distinguished NAFLD from healthy livers. We identified perturbations in pathways including calcium and insulin/glucose signaling occurring early in NAFLD disease, before the presence of histopathologic evidence of advanced disease. Transcriptomic comparisons identified a 25-gene signature associated with the degree of liver fibrosis. We also identified expression of the insulin-like growth factor binding protein (IGFBP) gene family (1/2/3/7) as correlating with disease stages, and it has the potential to be used as a peripheral biomarker in NAFLD. Comparing our data set with publicly available adult and adolescent transcriptomic data, we identified similarities and differences in pathway enrichment and gene-expression profiles between adult and pediatric patients with NAFLD. Regulation of genes including interleukin-32, IGFBP1, IGFBP2, and IGFBP7 was consistently found in both NAFLD populations, whereas IGFBP3 was specific to pediatric NAFLD. Conclusion: This paper expands our knowledge on the molecular mechanisms underlying pediatric NAFLD. It identifies potential biomarkers and directs us toward new therapies in this population.